
Foliage White Paper

 Copyright 2002 Foliage Software Systems 1 of 20
Headquarters: 168 Middlesex Turnpike, Burlington, MA 01803 781.993.5500
Silicon Valley: 51 East Campbell Avenue, Campbell, CA 95008 408.321.8444

www.foliage.com

Securing e-Medical:
Architecting Protected Health Information Systems

Brian D. Handspicker, Engineering Director, Foliage Software Systems

How do you get ready for HIPAA? With the HIPAA mandate for protecting health
information nearly upon us, how do you know which security scenarios you must
support? What security technology issues do you need to be sensitive about?
How do you make tradeoffs between potential security solutions?

This paper discusses the architectural issues associated with developing,
deploying, and supporting secure e-medical systems. This is the second in a
series of papers from Foliage Software Systems discussing secure e-medical. It
assumes that you have already read “Securing e-Medical: A Primer on Protecting
Health Information”.

The security and privacy challenge posed by HIPAA
“The Health Insurance Portability and Accountability Act of 1996 (HIPAA) was created in
response to the need for the healthcare industry to reliably and confidentially exchange
patient healthcare information in support of the portability of healthcare insurance and
patients between employees, insurance companies and healthcare providers.” To
support the confidential maintenance and exchange of electronic healthcare
information, the Department of Health and Human Services has developed regulations
that support and enforce HIPAA privacy and security:

o Privacy (April 14, 2001, compliance April 14, 2003)
o Security and Electronic Signatures (proposed)

These regulations prescribe care in handling paper records, as well as care in handling
electronic records for protected health information.

Protected information that is stored in a distributed e-medical (electronic medical)
information system is potentially subject to inappropriate access or modification, also
known as an attack.

Healthcare Institution Participating
User

Attacks Attacks

This paper discusses how to secure an e-medical system using widely used digital
security technology and mechanisms.

http://aspe.hhs.gov/admnsimp/pl104191.htm
http://aspe.hhs.gov/admnsimp/bannerps.htm
http://aspe.hhs.gov/admnsimp/bannerps.htm#security

Foliage White Paper

2 of 20

What does it mean to secure e-medical systems?
To deliver products that enable and support HIPAA, there are a set of formal security
and privacy practices and technologies that need to be incorporated into the products
you deliver. Specifically, HIPAA requires protecting health information through an array
of security, integrity and privacy techniques, including:

o authentication of users [see Authentication],
o authorized access to protected information [see Access Control],
o accountability of changes to protected information [see Accountability],
o integrity of protected information [see Accountability],
o non-repudiation of changes to protected information [see Accountability],
o confidentiality of protected information [see Confidentiality]
o monitoring access and modification of protected information [see Monitoring].

Each of these requirements could be satisfied through a number of different
technologies and mechanisms. The architectural challenge is to balance the value of
the additional security functionality against the potential risk of the technology, in the
context of the value of the information you are attempting to protect. There are no
perfect security systems.

Digital security attempts to raise the cost of breaching security high enough that it
becomes more cost-effective to simply bribe someone on the inside or execute
some other social engineering ploy to get the information desired. At the same time,
however, one should only put in place the security that’s appropriate for the
sensitivity or value of the information and the patience of its users. Security that is
excessively tight relative to the perceived value of the information can result in end-
users disabling security – either directly or through misuse of the information. For
example:

o printing high value information out and leaving it on their desks rather than
bothering with logging in to get it from the secure system

o leaving constantly changing random character passwords on a sticky note on
the computer monitor.

Such scenarios result in a false sense of security, when in fact security has been
compromised.

Evaluating the security requirements, analyzing the cost/benefits and selecting
which technology is used to satisfy each of these requirements is done through the
definition of a security architecture for your product or environment.

What is a security software architecture?
A software architecture is a set of concepts and design decisions about the structure
of a software system and how the resulting parts of the system collaborate to meet
the responsibilities of the system. An important aspect of documenting the concepts

Foliage White Paper

3 of 20

and design decisions in an architecture is the identification of potential technology
approaches and the tradeoff analysis that leads to selection of specific approaches
for the solution architecture.

A security software architecture addresses the concepts and design decisions
specific to the security of the software system in question, and the selection of
security approaches that can best satisfy the security requirements of the product.

How do I architect a secure e-medical system?
The security architecture for an e-medical system that enables and supports HIPAA
must address the following computer security services:

o Basic Cryptography
o Authentication
o Access Control
o Accountability
o Integrity
o Non-repudiation
o Confidentiality
o Monitoring

For each of these topics there are potential architectural approaches to satisfying the
underlying architectural scenarios. The remainder of this paper discusses those
approaches and considers the tradeoffs in selecting between those approaches.

Basic Cryptography
The computer security services that are required to protect electronic information are
based on mathematics and computer technology called cryptography. Most of the
techniques we discuss in this paper are built upon either “secret key encryption” or
“public key encryption” cryptography. Cryptography uses mathematical algorithms
to convert the text of protected information (“plaintext”) into what appears to be
gibberish (“ciphertext”) and back to plaintext. The algorithms use a piece of data
called a “key” to control exactly how the plaintext is to be scrambled into ciphertext
and then unscrambled again. This process is called encryption/decryption, and is
based on the requirements that:

1. it must be extremely difficult to derive the plaintext from the ciphertext without
prior knowledge of the key and

2. it must be extremely difficult to derive the key, even if you know both the
ciphertext and the plaintext.

Encryption can be implemented using either a single key to scramble and
unscramble the text (symmetric or secret key encryption) or a pair of keys, one to
scramble and a different key to unscramble the text (public key encryption). Each
underlying technology requires a different set of supporting concepts and
mechanisms.i

Secret Key Encryption
Secret key encryption (a type of symmetric encryption) uses a single key to encrypt
plaintext and decrypt the resulting ciphertext. This key must be kept secret between

Foliage White Paper

a small number of people and organizations to ensure that the information protected
by the encryption remains secure. The fewer people and organizations that must
know of the key the better.

Secret key encr
fast and are we
However, that i
secret key. So,
users of the enc

Public Key Encr
Public key encr
encrypt and dec
opposite mate c
in public key en
(obviously the “
allows anyone t
secret private k
only available to
key can encryp
assurance that
been sent) by th

The features of
valuable securi

1. If you co
informat
first resu
assured
only the

yption algorithms usually have the benefit of being very efficient and
ll suited to encrypting large files and large amounts of data.
nformation can only be decrypted by other people that know the
 on its own, secret key encryption is limited to small numbers of
rypted information.

yption
yption (a type of asymmetric encryption) uses a pair of keys to
rypt information. Either key can be used to encrypt, but only its
an be used to decrypt the resulting ciphertext. This feature is used
cryption systems by allowing one key to be publicly published
public key”) while its mate is kept secret (the “private key”). This
o use the public key to encrypt information that only the owner of the
ey can decrypt – making the encrypted information very secure and
 the intended recipient. On the other hand, the owner of the private

t information using the private key that anyone can decrypt with the
the information could only have been encrypted (and presumably
e owner of the private key.

 p
ty

m
io
lt
 t
 r

User 1

Secret
Key

Plaintext
Encrypt

Ciphertext

User 2

Secret
Key

Decrypt
Plaintext

2

4 of 20

ublic key encryption can be used to implement a number of very
 services. For example:

bine these techniques – a sender encrypting some protected
n with an intended recipient’s public key, and then encrypting the
ing ciphertext with the sender’s private key – the recipient is
hat the information really came from the sender, no one else, and
ecipient can read the information.

User 1

Encryption
Key

Plaintext
Encrypt

Ciphertext

User 2

Decryption
Key

Decrypt
Plaintext

Foliage White Paper

5 of 20

2. If you use a private key to encrypt protected information (or as we’ll discuss
later, a message digest), you can ensure that no one has modified the
information since it was last modified or sent.

Tradeoffs - Encryption Schemes:

o Performance versus Number of Participants

Secret key encryption performs faster and uses fewer computing resources than public key
encryption. However, the number of participants with whom symmetric encrypted protected
information may be shared is limited by the number of participants you can trust to know the
secret key. While public key encryption is often slower, an unlimited number of participants
may securely exchange protected information.

o Degree of Security versus Breadth of Security Features

Secret key encryption does not require third party service providers (e.g. Certificate
Authorities) to participate in the implementation of a secure exchange. As a consequence, if
the secret participants are trusted and the secret key well protected, there is a lower
potential for social engineering attacks through third parties. However, it is more difficult to
implement features such as Digital Signatures or Message Authentication Codes using
secret key encryption techniques.

o Simplicity versus Public Key Infrastructure

Secret key encryption techniques require little more than some simple tools, simple policies
and a simple trust model. Public key encryption requires an infrastructure of tools, services
and third party vendors, as well as a more sophisticated and therefore suspect trust model.

A number of sophisticated approaches combine secret key and public key techniques to get
the best of both worlds. (See, for example, “Session Keys” below.) We do not advocate
choosing one approach over another. Rather, you should choose the mechanisms you
need to meet your specific requirements.

Key Management
Key management is one of the most critical yet challenging aspects of security. Key
management provides for the:

o generation of strong keys, both secret and public/private pairs,
o secure storage of keys,
o exchange and distribution of keys to authorized users
o complete destruction of keys on expiration.

Because it is also a tempting target to individuals attempting to breach your security,
implementation of key management systems is best left to experienced security
consultants and specialist product companies. However, there are a number of key
management features that must be considered when selecting a product (e.g. a
Public Key Infrastructure) or designing a solution with a security consultant, including
key generation, storage, exchange and destruction.

Foliage White Paper

6 of 20

Key Generation – To ensure a secure encryption system, key management
systems must generate keys that are random, avoid known “weak” keys and be
sufficiently long to increase the difficulty in breaking the keys.

Key Storage – Public keys, private keys, secret keys and , passwords, end up
stored in and on computer systems. This security information is obviously very
sensitive. In particular, the secure representation and storage of private keys, secret
keys and passwords must be carefully designed. Too often, software that uses
private and secret keys fails to remove the keys from memory after use – creating an
opportunity for clever sleuths to steal the key through inspection of memory. And
often, password and key files are poorly protected on disk, and are stored on
systems that are physically insecure or are archived on tapes stored in non-secure
facilities.

Tip: Software applications that must directly use plaintext copies of private or secret keys
should overwrite the memory associated with the storage of the key immediately after use.
Otherwise a clever attacker can force the application to crash and inspect memory for un-
wiped lists of plaintext keys.

Key Exchange – There are a number of cases in which secure, and where possible
out-of-band, exchange of private and secret keys is required. When a new
public/private key pair is generated for an asymmetric encryption system, the private
key must be able to be transmitted to the subscriber for their use. Session-specific
secret keys (see below) must be able to be transmitted to the recipient system for
use with a symmetric encryption system for the secure transmission of session
information. When first getting started with encryption, this can seem like a chicken
and egg problem. For example, if you don’t have a means of securely exchanging
information, how do you securely get the first key you need to start securely
exchanging information? Of course, once a public/private key pair are available,
they can be used to exchange other keys – whether new public/private pairs, secret
keys or one-time session keys.

Key Destruction – To preserve the security of an encryption scheme over the long
haul, keys must be changed frequently and previous keys destroyed. Changing
keys (and passwords) on a regular basis should be obvious – the longer a potential
hacker has to work on a key, the more likely they will be able to break the key or
acquire the key through social engineering techniques. The lifetime of a key should
be inversely proportional to the value of the information it is protecting (the higher
the value the shorter the lifetime). In addition, if the key is programmatically
generated, destroying evidence of previous keys provides an added degree of
protection to the generation algorithm.

Tip: If password and key files must be backed up, back them up separately from the rest of
the data in the system. This way the backup tapes can be stored in the most secure
manner and these most sensitive tapes can be destroyed without affecting the backup tapes
of other less protected data.

Foliage White Paper

7 of 20

Tradeoffs – Key Management
o Key length: 40-bit versus 64-bit versus 128-bit Keys

With current computer hardware and software, 40-bit keys are relatively easy to break
through brute force attacks. 64-bit keys are better, but not perfect. 128-bit keys are
preferable, when both the encryption computing time for the information is affordable and
the export laws allow.

o Key lifetime: One-time versus Short-term versus Long-term Keys

One-time keys are the least likely to be broken, if their use is truly temporary and the
algorithm for generating the keys is not predictable. They are convenient for encrypting
information while it is being transferred from one system to another. However, they are ill-
suited to use for identifying individuals (e.g. passwords or certificates) or for encrypted
information stored long-term on a system. Keys that are used to identify individuals should
live long enough to be readily managed and in the case of passwords to avoid disgruntled
users. Keys that are used to encrypt data in long-term storage need to change often
enough within the value lifetime of the information protected to foil attempts to breach the
information, but not so often that they create an administrative overhead for re-encrypting
information unnecessarily.

o Key storage: No storage versus Local storage versus Centralized storage

The most secure mechanism for the storage of keys is not to store the keys online at all.
This can be accomplished either by requiring keys to be memorized (problematic for keys
long enough to be useful) or stored on a hardware token or smart-card (problematic since
the owner must be trusted not to lose the card). Storing keys local to either the user’s login
or the location of the encrypted information could distribute the opportunity for a ne’er-do-
well, and thus reduce potential for attack. However, it creates more systems on which the
highest physical, hardware and software security must be implemented. Centralizing
storage of keys simplifies the management security and eases the problem of securing the
keys. However, it creates an attractive nuisance to anyone interested in breaching security.

o Key destruction: Memory and Disk and Tape

Not a tradeoff, but the reiteration of a requirement: when a plain-text key is used, the
memory in which it was stored must be zeroed after use. When a plain-text key is destroyed,
it must be securely overwritten on disk and any backup tapes must be rewritten and
destroyed.

Digital Certificates
Many of the security mechanisms we’ve discussed in this paper are based on the
consequences of digitally “signing” protected information using either secret key
encryption or public key encryption. When a piece of information is “signed” using
public key encryption, the signer uses their private half of the public/private key pair
to encrypt the information. Someone testing that signed information (e.g. to validate
the source of the information or integrity of the information) uses the public half of
the key pair to decrypt the information. The security question that is raised by this
operation is how does the person testing the signed information know that the
public/private key pair really belong to the asserted signing user and not someone
masquerading as that user? In the absence of some means of creating a formal
trust between the sender of the information and the tester of the information, it would

Foliage White Paper

8 of 20

be easy to spoof the tester. Digital Certificates are encrypted documents generated
by a Certificate Authority that assert the identity of the owner of a public/private key
pair. These certificates, based on ISO/CCITT standard X.509, include the name of
the authority that issued the certificate, name or identities of the subscriber of the
certificate (owner of the key pair), the public key of the subscriber and the
operational period of the certificate (valid from date “a” until date “b” – note the
certificate operational period is not the same as the associated key lifetimes, but
should never be valid longer than the expiration dates of any of the associated
keys.) Other information may optionally be included in these certificates. These
certificates are then digitally signed by the issuing certificate authority.

Digital Certificate Authorities
Certificate Authorities (CAs) issue digital certificates for use as an assurance of
identity of the holder/presenter of the certificate. Organizations may act as their own
CA, issuing certificates for their internal users. They may also issue certificates for
external users (e.g. partners), assuming their partners trust the organization to act
as a CA. Or, an organization may use a third party CA to issue Certificates and act
as a “trusted source” for both internal and external users. Of course, you and your
partners need to be able to trust the third-party CA generating the certificates. And,
by adding another layer of service providers to your security system also brings with
it the additional opportunity for “social engineering” to breach the security of your
system. The architectural challenge is to balance the value of the additional security
functionality against the potential additional risk, in the context of the value of the
information you are attempting to protect.

Authentication
Authentication is the process of verifying the identity of a potential user of a system.
Most authentication mechanisms are based on some combination of one or more
“shared secrets” (e.g. password), security devices (e.g. access card) and/or physical
characteristic (e.g. fingerprint). A common combination (sometimes called “two
factor authentication”) is authentication based on something you have (e.g. your
ATM card) and something you know (e.g. the ATM account PIN). At its simplest,
authentication is performed through the verification of an access code or a
username/password pair entered by the user at the time they wish access to the
system. More sophisticated authentication mechanisms include the use of “smart
cards” to store encrypted credentials and even biometric analysis of fingerprints,
face-scans or retina-scans. Authentication on its own does not provide control of
access to any information or services provided by the system. Authentication only
verifies with some level of certainty that you are who you claim to be. The more
stringent the authentication requirements, the more sophisticated the authentication
mechanism to achieve the level of certainty required.

When an authentication attempt fails (e.g. an incorrect password is given), the
attempt to access the system or information must be blocked and the failed attempt
logged for future forensics investigation. A retry policy may allow the user to
reattempt authentication. However, such policies must limit the number of retries
and error messages should not provide any information that might be used to
improve attempts to break into a system.

Foliage White Paper

9 of 20

Tip: Never reveal whether it was the username or the password that was incorrect during a
failed login attempt. Doing so helps an attacker focus their efforts.

When a successfully authenticated session has been idle for a significant period of
time (as specified by local security policy), then access to the session should be
blocked, and displayed information cleared from the screen until the user has
successfully re-authenticated.

Tip: The policy for idle time-out of an authenticated session should be inversely proportional
to the value of the information accessible through the system and proportional to the risk of
attack. For example, one should set a very short time-out (e.g. 1 minute) on a
pharmaceutical ordering system that is accessible in a public area, one could set a longer
time-out (e.g. 15 minutes) on a system that holds private information in a secure area, and
perhaps an even longer time-out (e.g. 1 hour) on a personal PC in a locked office.

Password or Access-code Authentication
The simplest mechanism for authentication is the use of a password or access-code
that allows a user to “log in” to a system. Passwords and access-codes are often
used in combination with other authenticating “information”. Authenticating
information could include a username, a magnetic-strip key-card, or even a door-
key. When used alone, passwords or access-codes must be unique to the individual
you are attempting to authenticate. When used in combination with other
authenticating information, the combination of information must be unique to the
individual to be able to identify the user of protected information.

Tip: Passwords, access-codes and even usernames are a form of shared secret. While
usernames usually make poor shared secrets on their own – being easily guessed, even
often reused as email addresses – the combination of an unknown pool of usernames and
secret passwords still provides stronger security than a published list of usernames with
secret passwords. So, usernames should always be considered secrets not to be widely
shared outside an organization.

The strength of a password is directly associated with the length of the password in
characters, the complexity of characters used (e.g. mixing upper and lower cases,
numbers and letters, punctuation, etc.), the lack of personal clues and avoidance of
known words. The ideal password is a random string of upper, lower, numbers,
letters and punctuation marks with a length sufficient to discourage direct attacks.
However, such passwords are difficult to memorize, and thus often end up written
down on a piece of paper and stuck to the monitor or keyboard of the user – thus
destroying the very security intended. So organizations usually create a policy that
allows users to select their own password, but enforce length, mix of characters and
discourage embedded personal information.

One-time Password Authentication
Whenever a password must be exchanged across a network, the password is at
risk. Too often, passwords are exchanged in plaintext. Even when exchanged as
encrypted text, they are subject to attack or replay. One mechanism for avoiding
these problems, particularly between systems that regularly communicate, is the use
of a one-time password system. With one-time password systems a user or
application is given a sequence of private passwords (through a secure or non-
electronic channel) that are each intended to be used only once. The system that

Foliage White Paper

10 of 20

issues the passwords generates the sequence using an algorithm that for each
password entered into the algorithm produces the next password. (Of course, the
passwords must then be used in reverse order or an attacker that intercepts or
cracks one of the passwords could just regenerate the list from that point in the
series themselves. Typically, the issuing system keeps the 1st password in the
original series to be able to regenerate the entire list, and the last password used.)

Pass-phrase/Challenge Authentication
Though not usually used for primary authentication, the use of pass-phrases (e.g.
“Joe sent me”) or question/answer challenges (e.g. “what is your mother’s maiden
name/Smith”) is widely used for secondary authentication by customer service
personnel to validate a user before revealing or reissuing a forgotten password.

Tip: A single challenge usually makes for weak security (unless you are asking a question
so secret or obscure it rises to the level of a password). But in combinations (e.g. “what is
your mother’s maiden name” and “what are the last four digits of your social security
number”) they begin to raise the level of confidence. Careful choice of pass-phrases or
questions can increase the difficulty of guessing or acquiring the answers by a third party.

Digest Authentication
Digest authentication implemented by HTTP1.1 (RFC 2617) to authenticate secure
web transactions, takes the concept of challenge-response authentication one step
further. The web server sends a randomly generated challenge to the browser,
which computes and returns a checksum of the username, password, challenge
value, requested HTTP method, and requested URI (Universal Resource Identifier).
Since only the challenge and response is exchanged, rather than the password
itself, it provides additional protection for the password. Unfortunately, although this
technique avoids exchanging the password at the time of authentication, the
password must still have been shared between server and browser at some time
before use for authentication.

Digital Certificates
As described in the previous section, digital certificates can store information that
can be used to electronically verify an identity:

o if you trust the source of the certificate, and
o if you trust the initial authentication of the subscriber by the source of the

certificate, and
o if you trust the storage mechanism of the certificate, and
o if you trust the source system presenting the certificate, and (finally)
o if you trust that the source system has sufficiently strong authentication,

authorization and access control mechanisms and policies to ensure that the
individual using the certificate is really the owner of the certificate.

Even with all of these caveats, digital certificates have become a very popular
authentication mechanism in distributed systems because they can convey a lot of
authentication information in an encrypted form across the public Internet.ii In
addition, they provide an essential component to most public key encryption systems
and all of the various related security mechanisms.

Foliage White Paper

11 of 20

Hardware Tokens and Smart Card Authentication
One mechanism that allows for more sophisticated authentication without the
challenges of complex passwords is the encoding of passwords or digital certificates
within either a hardware authentication “token” or a more general “smart card”.
Hardware that is specific only to authentication is called a token. Hardware that can
support authentication, as well as other secure services (e.g. debit card
transactions) is called a smart card. The information on the token or card can be as
complex as necessary to achieve the desired level of security without requiring the
user to remember the information themselves. In particular, authentication tokens
are often synchronized with an authentication server to produce “one-time
passwords”. Of course, now you are dependent on the user to remember the card
and protect its security.

Tip: One variation on this hardware approach is to include challenge questions/responses
within an encoded digital certificate on the token or card that could be used to verify that the
holder of the card is likely the owner of the card.

Biometric Authentication
It has become almost routine to see biometric authentication devices in action
movies. Of course, at the same time they are being presented by Hollywood as the
most sophisticated security mechanisms, they are inevitably being compromised in
the film by some clever thief, spy or warrior. Yet, there are highly sensitive
circumstances when biometric devices are appropriate. Currently available
biometric authentication includes devices to read fingerprints, retinal patterns,
voiceprints, and facial characteristics.

Tip: There are also significant concerns that cinematic fiction is closer to reality than some
device manufacturers would like. Recent research by Tsutomu Matsumoto revealed that
$10 worth of kitchen supplies could be used to create gelatin fake fingers with molded
fingerprints that fool some fingerprint authentication devices 80% of the time.iii

Verification Services
Verification services provide a subscription service to businesses that wish to double
check the identity of a user. These services are often run by credit reporting
agencies which have large amounts of information about individuals. They compare
information submitted by the subscriber about an individual to information in their
credit databases (e.g. home address, social security numbers, credit card numbers,
etc.) to generate a probability of accurate identity. This is similar to a challenge
question/answer approach to authentication, but often is done without the end-user’s
knowledge.

Tradeoffs - Authentication:
o Robustness of key versus limits of human memory

The longer and more random an encryption key, the stronger the resulting encryption.
However, the longer and more random the key, the harder it is for the key to be memorized.
The result is often either humans memorizing short, simple keys that are easy to crack, or
longer more random keys stored on a computer system that are easy to find. To meet high
security requirements, this tradeoff leads to the use of either hardware tokens/smartcards or
biometric authentication.

Foliage White Paper

12 of 20

o Degree of electronic security versus risk of physical loss

Hardware tokens and smartcards can be used to gain higher security from longer keys with
shorter key-lives. However, these cards need to be protected by the individual, and care
must be taken not to let the cards fall into the hands of others – even temporarily or
accidentally.

o Cost to acquire versus cost to maintain

Tokens, smartcards, biometric scanners, and other hardware based authentication solutions
add capital costs to implementing a security system. However, to achieve strong, ongoing
security through software based authentication solutions, a significant administrative effort is
required to generate, securely store, retire, destroy and regenerate keys that are held by
humans and computers.

o Use of third parties to verify or authenticate versus close control over crypto-information

Use of third-party certificate authorities and verification services can offload some of the
responsibility for initial authentication and add a perception of added trust to a security
system. However, third-parties also become additional points of attack on the associated
identities, certificates and keys.

Access Control
Access Control is the process of determining what privileges (also known as grant or
denial of “rights”) that an authenticated user (human or programmatic) performing in
a authorized role (e.g. “administrator”, “owner”) has for the access to a specific
resource (e.g. application, service, file or piece of information) and what operations
the user may perform on that resource (e.g. read, modify, delete, execute) based on
a set of policies and/or rules.

Access control is sometimes also called “authorization”, particularly when referring to
the process of determining whether a user is authorized to have access to a system
or application. Access to a specific piece of information can only be granted to a
properly authenticated, authorized user with appropriate levels of access (e.g. a
physician may have complete access to their own patient’s information, yet only
have access to de-identified or statistical information about another physician’s
patients). Obviously, care should be taken when granting access to not only
preclude access to the unauthorized users but also grant access to information to a
covering healthcare provider during appropriate periods of time and granting access
to emergency personnel. Access control can be implemented with at least four
levels of sophistication:

o User-based access control
o Role-based access control
o Hierarchical-based access control
o Context-based or rules-based access control

Foliage White Paper

13 of 20

User-based Access Control
Implementing authorization policies can be as simple as maintaining and referring to
a list that matches individual user identity and a specific right for a resource. These
are usually implemented by a specific application on a specific system (e.g. a file
system access control list, aka ACL). The challenge with user-based access control
is that it requires considerable system administration effort to maintain the access
control lists for all users on all systems for each piece of protected information.

Role-based Access Control
Since users often play specific roles (e.g. administrator, physician, covering
physician, etc.), the administrative headache of managing a protected system can
be reduced by matching a user’s role to a specific right for a resource. However,
this too becomes problematic when managing access rights across many different
systems. In addition, individual user rights must still be granted for information
owned by individuals and not accessible by other members of the user’s groups.

Hierarchical Access Control
By organizing roles and groups of users hierarchically, the effort to manage access
rights can be further simplified – if no specific permissions are granted for a specific
user or role for a resource, the user/role inherits the default rights of its parent group.
This approach works well if there are groups of users with nearly identical access
rights across all individual member users. However, in healthcare environments, the
rights that you have to protected information can depend on the context.

Context or Rules-based Access Control
Under normal circumstances, a user in a healthcare facility has limited access to
patient information. Only those with a direct need-to-know are allowed access to
detailed protected information. However, there are a number of situations in which
healthcare professionals need to have access to information based on the current
context:

o a covering physician must have access to patient information in a unit
o a physician receiving a referral must access some subset of a patient’s

protected information
o an emergency room nurse must access historical information while

performing triage in a busy ER

More sophisticated approaches to implementing context-based access control policy
involve the use of policy and rules services for all of the resources within a system or
a site. These access control services may support both static policy (e.g. what
applications can be used, files that can be accessed, directories that can be viewed,
hours of access, storage quota, etc.) and dynamic rules based on real-time context
(e.g. whether currently covering for another healthcare provider).

Foliage White Paper

14 of 20

Tradeoffs – Authorization and Access Control:
o User and Role-based versus Context and Rules-based Access Control

Many applications already provide mechanisms for implementing and testing authorization.
For example, file system access control mechanisms exist on all major operating systems.
However, the cost and inconvenience of managing authorization policy across many
applications on many machines quickly undermines diligence in maintaining this critical
security information. On the other hand, context and rules-based access control products
can be expensive to buy, challenging to integrate with legacy systems and frustrating to
configure in their own right. You should consider the long-term consequences of choosing
simple local access control versus choosing sophisticated centralized access control.

o Granularity of information protected versus cost of maintaining and testing authorization

At a minimum access to applications and files must be protected. Some environments
require protecting information at the granularity of individual database records. This adds
computing overhead, as well as management overhead. In rare cases, individual database
fields must be independently protected. However, this dramatically increases the
computation cost and implementation complexity. (And, if possible, may be better
addressed through restructuring the schema for the database.)

Accountability
Users of protected health information (whether authorized or not) are accountable
for all access to, modifications to, and distribution of that information. HIPAA
requires that unauthorized access to protected health information be reported. Audit
logs are tools for logging the authorized and unauthorized use of the applications
and/or services of a system, as well as access and/or changes to protected health
information. Regular inspection of audit logs is critical to protecting the security of
the system, the integrity of the protected information, and the legal standing of the
organization. (see Monitoring)

Protected health information must be represented, stored and distributed in such a
way that any attempt to alter the information (whether authorized or not) can be
identified and tracked. Typically a system-independent mechanism bound tightly to
the information (e.g. checksum, CRC, or digital signature) provides corroboration of
the integrity of the information.

Non-repudiation takes integrity of information one step further to provide non-
refutable evidence of creation, deletion, modification or distribution of information.
This ensures that even an authorized user cannot access, change, or share the
information and then deny the access.

Checksums and CRC (Cyclical Redundancy Checks)
Protected information can be protected against accidental change during
transmission using checksums or cyclical redundancy checks (CRCs). A checksum
is generated before the information is transmitted and is attached to the
transmission. On receipt of the protected information a new checksum is generated

Foliage White Paper

15 of 20

and compared to the checksum that was transmitted. If there is a difference
between the sender’s and the recipient’s information checksum, there has been an
error in transmission of the information. Checksum algorithms are designed to catch
major errors in transmission, but often catch small errors as well.

However, checksums should only be considered for protection against accidental
change. Checksums provide only a weak integrity check. First, many different
pieces of information can yield the same checksum value. Second, the typical
checksum is usually a small value (often on the order of 8 bits). A malicious outsider
with knowledge of the checksum or CRC algorithm could intercept the information,
alter the contents, and/or re-compute the checksum transparently. The main value
of checksums is to detect data corruption.

Message Digests
Another technique for recognizing a change in a piece of protected information is to
generate and encrypt a message digest of the information and then attach the
resulting MD key to the original information. A message digest is created by running
the protected information through a hash function. Hash functions take variable
length data, and based on the data generate a fixed length (128 or 160 bit) key that
is unique to the original data.

If the original information remains unchanged, a regenerated message digest should
match the original message digest. If someone tampers with the information, the
regenerated message digest will not match the original digest. The original digest
can be protected by being digitally signed by the last authorized modifier of the
information.

The algorithm used by a message digest makes it extremely unlikely that two
different pieces of information will end up with the same MD key. On the other hand,
even very slight differences in the format of the information (say a tab substitution for
spaces) will generate two different MD’s.

Message Authentication/Integrity Codes
Message authentication codes (MACs), also known as message integrity codes
(MICs) are a variation on message digests. However, with MACs, the last
authorized modifier’s secret key is hashed along with the protected information to
create a digest that could only have been created by the owner of the key. MACs
need not be digitally signed to assure authenticity, but they are also only verifiable
by the owner of the secret key.

Digital Signatures
A digital signature of protected information is created by generating a message
digest of the information and then encrypting the digest with the private key of a
public/private encryption key pair. A recipient of the message can verify that the
information originated from the purported sender by decrypting the message digest
and comparing the original digest with a newly generated digest. This also verifies
that the information has not been accidentally or maliciously changed since its last
authorized modification.

Foliage White Paper

16 of 20

Digital Timestamps
To assure non-repudiation of a change to protected information, it is necessary to
include a non-forgeable timestamp with a digital signature. This ensures that in the
event a private key is ever compromised (through breach, accident or even
intentional publication), the original owner of the key cannot repudiate modifications
that occurred before the compromise.

Tradeoffs - Accountability:
o Do we need to know if it has changed in transit accidentally?

Use CRCs or checksums. They are simple, cost-effective and widely implemented.

o Do we need to know if it has changed in storage?

Use Message Digests. They are simple, cost-effective and more accurate for long-term
storage.

o Do I know no one else has changed it?

Use Message Authentication Codes. Since they use secret keys, they are very secure and
provide proof to a small number of people that the information has not changed.

o Do we need other people to know who changed it?

Use Digital Signatures. Since they use private/public keys that are secure, while still
testable by anyone that needs to know.

o Do we need to prove who changed it when?

HIPAA requires use of Electronic Signatures to enforce non-repudiation on changes to
electronic records. HIPAA Electronic Signatures combine Digital Signatures with Digital
Timestamps to provide proof that the information has not changed since a specific time at
which it was encrypted by a specific person.

Confidentiality
Data in a secure system, or data being exchanged across secure distributed
systems must not be viewable by unauthorized users or systems. Privacy often
must extend to privacy of requests to the secure system. Unauthorized users could
glean important information about data on the system simply based on “over-
hearing” a request regarding the data (e.g. “copy fredsmith-hiv-test.doc.\archive”).

Confidential Storage
Confidential information should never be stored in plaintext on a non-secure system.
If the physical or electronic security of a system is suspect, confidential information
should be stored encrypted using keys that are not stored on the non-secure
system. Depending on the nature of the information, it may be stored in an
encrypted file, stored as a set of message digest records or stored as encrypted
fields within a database.

Foliage White Paper

17 of 20

Tip: A common technique for storing login passwords is to create a file with a set of
message digest records, one record per username/password pair. Since the password is not
stored, just the digest for it, the original password cannot be derived. Yet, when a user
logins in with a valid password, the message digest of the entered password will match the
message digest in the password file.

Confidential Communications
Protecting the privacy of data that is being exchanged across a network requires
encryption of the data. This encryption can happen at a number of different layers in
the communications process:

1. Network layer encryption
2. Session layer encryption
3. Application layer encryption

Network layer encryption is usually implemented between secure network routers
based on the IETF IP sec standard. These routers encrypt all (IP payload) traffic
sent between themselves and other mutually authenticated routers. If the sending
and receiving local area networks (LANs) and associated systems are secure, and
the path between them is secure (e.g. configured as a virtual private network using
network-level encryption), session-level and application-level encryption is not
necessary.

The challenge with network-layer encryption is that information is only encrypted
between the edges of the LANs of each organization. The information will be in
plaintext within each LAN and on the end-systems of each organization. When you
are unsure if the network between end-systems is secure, session-layer encryption
can be used to secure the information being exchanged from end-system to end-
system independent of whether the network-layer is encrypted. Session-layer
encryption is often implemented using the secure socket layer (SSL) industry
standard. SSL is used for secure transactions by web, email, and file transfer
applications. SSL supports two different key-lengths – 40 bit and 128 bit. The
longer the key, the more difficult it will be to break the encryption. However, support
for keys larger than 64-bit (as of 5/24/02) is subject to U.S. government export
control. Many companies have secured export licenses for their 128-bit SSL
implementations. Care should be used when selecting technology if there is a need
to allow access to information from outside the United States.

SSL is being replaced by a developing new IETF standard “Transport Layer
Security” (TLS – RFC 2246). TLS is based on SSL, with some enhancements to
improve security. Unfortunately, as a result of the enhancements, TLS and SSL are
not compatible or interoperable with each other. The industry is still gaining
experience implementing TLS, so wide-scale use may yet take some time.

Certain types of highly-confidential information (e.g. encryption keys) should rarely
exist in plain-text. For these types of information, the associated application may
need to control and exchange the information in continuously encrypted form. If the
information is encrypted by the application-layer, it is irrelevant if the session-layer or
network-layer encrypts the information.

Foliage White Paper

18 of 20

Session Key-Based Encryption
The broad use of public key encryption techniques carries with it two challenges:

1. public key asymmetric encryption/decryption is slow compared to secret key
symmetric encryption/decryption

2. the more information exchanged using a public/private key pair, the more
opportunity for attack on that pair

A common technique for exchanging large amounts of information between systems
is to use public key encryption to securely exchange a temporary secret key to be
used for symmetric encryption during this session. The symmetric secret key
encryption/decryption will execute faster for the large amounts of information to be
exchanged. In addition, once the session is over the key is destroyed limiting the
opportunity for someone to break the key.

Replay Protection
Even with strong measures to protect privacy and integrity of information, it is
possible for a third party to intercept and record protected information in transit and
retransmit it at a later time. If the duplicate transmissions are not detected, logged
and discarded, significant health or financial problems can be created. For example,
multiple orders for pharmaceutical treatment could result in overdoses or theft;
multiple work orders for diagnostic tests could result in over-billing. Replay
protection can be implemented using globally unique transaction identifiers.

Tip: Resist the urge to use shorter locally unique identifiers. Over the lifetime of the
information system, the breadth of systems with which you need to interoperate is certain to
grow with the prospect of new conflicts between transaction identifiers.

Data Compression and Encryption
Data compression is often used to reduce the size of information being exchanged
between systems. Data compression algorithms exploit statistical properties in the
original information to reduce the encoded size of the information. By their very
nature, encryption algorithms destroy the statistical properties that compression
algorithms use to reduce the size of the information. So compressing encrypted
information will not significantly reduce its size. However, compressing a clear-text
copy of the information and then encrypting the results, not only produces a smaller
encrypted message, but may also improve the security by reducing redundancy in
the pre-encrypted information.

Tradeoffs - Confidentiality:
o Network versus Transport versus Application layer encryption

If the sending and receiving LAN environments are known to be physically and electronically
secure and an encrypted VPN exists between the systems, using the built-in network-layer
encryption is transparent and centralizes management of the associated encryption keys.
Centralized management of a smaller number of keys increases the likelihood that the keys
will be well maintained and well protected. If, however, either LAN is suspect but the end-
systems are trusted, use SSL/TLS transport-layer encryption to protect the information

Foliage White Paper

19 of 20

exchanged. The application will need to know how to pass information through the
appropriate API or protocol, and the user will need to have the appropriate Digital
Certificates installed with the application. This increases the wire line security of the
encrypted information, but also increases the risk of breach through potential attacks on the
certificates and through the use of third party certificate authorities.

Monitoring
Each of the security mechanisms used to protect sensitive systems and information
has the potential of being breached by a clever attacker. To maintain the security
and integrity of the protected information, vigilance is required, not only in selection
of technology and implementation of policies, but also in monitoring the systems to
identify attempted breaches, suspicious access trends, and track compliance with
specified policies and procedures. Monitoring includes:

o Audit Logs
o Trend Analysis
o Alarms
o Event Reporting
o Cyberforensics

Audit Logs
Each attempt to create, access, modify, transfer, or delete protected information
must be tracked and recorded. This is called an audit trail or audit log. Audit logs
must be reviewed on a regular basis, either manually or through an automated rules-
based analysis system.

Trend Analysis
Often questionable attempts to access or modify information occurs across a set of
related protected information. One failed attempt on one piece of information could
be overlooked as a slip of the mouse. However, multiple attempts to gain access to
the same set of information should trigger an alarm.

Alarms
Alarms are notifications of an unusual event or attempt to breach the security of the
protected system. The alarms and alarm system need to be protected themselves
to ensure that the functionality and information in the alarm system are not
compromised to hide attempts to breach the system.

Event Reporting
When a protected health system or protected health information is compromised,
federal and state laws require that the event be formally reported.

Cyberforensics
Finally, if an attempt to breach the security of the system is recognized,
cyberforensic tools should be used to identify the attacker and close the security
weakness being exploited.

Foliage White Paper

20 of 20

What do I do Monday morning?
Putting this information all together, medical device manufacturers and healthcare
software vendors need to go through the following steps to ensure they architect
appropriate solutions for their security needs:

1. Identify security scenarios you need to support
2. Identify the risks inherent in the environment to be protected
3. Identify any sensitivities in the environment to be protected
4. Perform tradeoff analysis on potential architectural approaches
5. Integrate selected security approaches into products/environment
6. Monitor and audit environment to identify weaknesses
7. Repeat as necessary

About Foliage Software Systems

Foliage Software Systems delivers custom software, complex systems integration
services, and technology strategy consulting. Since its founding in 1991, Foliage has
completed more than 150 projects for clients in heathcare, semiconductors, avionics,
financial services, wireless services, and e-business. More than three-quarters of
Foliage’s software engineers have a decade or more of experience and the average
is eighteen years. The company’s 95% retention rate facilitates teamwork and
continuity from project to project. Foliage has been consistently profitable, is self-
funded, and has annual revenues of more than $25 million. Foliage operates
development centers at our headquarters in Burlington, Massachusetts and at our
Silicon Valley office in Campbell, California. The company has been named to the
Deloitte & Touche Fast 50 for the last two years and Software Magazine’s Software
500. Learn more about Foliage's track record by viewing the success stories at:
http://www.foliage.com/medical.

Copyright 2002 Foliage Software Systems
Headquarters: 168 Middlesex Turnpike, Burlington, MA 01803 781.993.5500

Silicon Valley: 51 East Campbell Avenue, Campbell, CA 95008 408.321.8444
www.foliage.com

i Warwick Ford, Computer Communications Security: Principles, Standard Protocols and Techniques
71-75 (1994);
Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code in C,  2.1-2.8, 21-46
(2d ed. 1996)
ii “The Emperor’s New Clothes: The Shocking Truth About Digital Signatures and Electronic
Commerce”, Jane K. Winn, 2001
“Ten Risks of PKI: What You’re not Being Told about Public Key Infrastructure”, Carl Ellicon and
Bruce Schneier, Computer Security Journal, Volume XVI, Number 1, 2000
“Conventional Public Key Infrastructure: An Artifact Ill-Fitted to the Needs of the Information Society”,
Roger Clarke, European Conference in Information Systems, June 2001
iii T. Matsumoto, H. Matsumoto, K. Yamada, S. Hoshino, "Impact of Artificial
Gummy Fingers on Fingerprint Systems," Proceedings of SPIE Vol. #4677,
Optical Security and Counterfeit Deterrence Techniques IV, 2002.

http://www.foliage.com/medical

	The security and privacy challenge posed by HIPAA
	What does it mean to secure e-medical systems?
	What is a security software architecture?
	How do I architect a secure e-medical system?
	Basic Cryptography
	Secret Key Encryption
	Public Key Encryption
	Tradeoffs - Encryption Schemes:
	Key Management
	Tradeoffs – Key Management
	Digital Certificates
	Digital Certificate Authorities

	Authentication
	Password or Access-code Authentication
	One-time Password Authentication
	Pass-phrase/Challenge Authentication
	Digest Authentication
	Digital Certificates
	Hardware Tokens and Smart Card Authentication
	Biometric Authentication
	Verification Services
	Tradeoffs - Authentication:

	Access Control
	User-based Access Control
	Role-based Access Control
	Hierarchical Access Control
	Context or Rules-based Access Control
	Tradeoffs – Authorization and Access Control:

	Accountability
	Checksums and CRC (Cyclical Redundancy Checks)
	Message Digests
	Message Authentication/Integrity Codes
	Digital Signatures
	Digital Timestamps
	Tradeoffs - Accountability:

	Confidentiality
	Confidential Storage
	Confidential Communications
	Session Key-Based Encryption
	Replay Protection
	Data Compression and Encryption
	Tradeoffs - Confidentiality:

	Monitoring
	Audit Logs
	Trend Analysis
	Alarms
	Event Reporting
	Cyberforensics

	What do I do Monday morning?

